Research article

Environmental correlates of growth patterns in Neolithic Liguria (northwestern Italy)

I. Doria, A. Varalli, F. Seghi, J. Moggi-Cecchi, V.S. Sparacello

ARTICLE INFO

Keywords:
Growth disturbances
Stunting
Neolithic transition
Life history
Tuberculosis

ABSTRACT

Objective: This study evaluates patterns of human growth in the Neolithic to make inferences about environmental correlates of developmental disturbances.

Materials: 33 children/adolescents from the Neolithic of Liguria (Italy), 29 of which date between 4,800-4,400 cal BCE.

Methods: Neolithic patterns of growth are compared with a modern sample (the Denver Growth Study; DGS). Dental development was used to determine age at death. Proxies for postcranial maturation are femoral length and proportion of mean adult femoral length attained.

Results: Ligurian children show growth faltering compared to DGS, especially between 4 and 9 years of age. Between 1 and 2 years, and in later childhood and adolescence, values are more similar or higher than DGS, when using the proportion of adult femoral length attained.

Conclusions: The pattern of growth in Ligurian Neolithic children may reflect a deprived and highly-infectious environment: three individuals show skeletal lesions consistent with tuberculosis. The relatively faster growth in infancy may result from the buffering provided by maternal milk. Older children and adolescents may exhibit catch-up growth.

Significance: This study contributes to our understanding of Neolithic selective pressures and possible biocultural adaptive strategies.

Limitations: The cross-sectional nature of the data and the small sample size make it unclear whether the observed pattern is representative of the growth patterns in the living population. The possibility that adults are stunted undermines the interpretation of optimal growth in the first years.

Suggestions for Further Research: Refine age estimates, increase sample size through the study of other bone elements.

1. Introduction

Developing individuals subjected to high levels of environmental stress, such as poor nutrition (Johnston et al., 1976; Martorell, 1985), infectious disease and parasites (Solomons et al., 1993; Stephensons, 1987), or even psycho-social stress (Powell et al., 1967), may exhibit slower rates of growth, delayed maturation, prolonged growth, and smaller final adult size (Bogin, 1988, 1999; Ulijaszek et al., 1998). Although genetic factors interact with the environment in the expression of body size and rate of growth (e.g. Evehleth and Tanner, 1990; Johnston et al., 1976), studying growth trajectories at a population level provides insights about variation in environmental correlates of growth disturbances, such as warfare, famines, and socioeconomic parameters (Powell et al., 1967; Ulijaszek et al., 1998).

In bioarchaeology, the study of growth trajectories and their interpretation, including comparisons with modern reference samples, faces a number of problems (reviews in Lewis, 2007; Saunders, 2008). Problems related to archaeological assemblages include the differential preservation of juvenile remains (Bello et al., 2006), the cross-sectional rather than longitudinal nature of data (Humphrey, 2003), the representativeness of data due to the osteological paradox (Goodman, 1993; Saunders and Hoppa, 1993; Wood et al., 1992), and the temporal
I. Dori, et al.

Sparacello et al., in review. 2 Epiphyses were plastered to the diaphysis, the length may be slightly overestimated.

The Neolithic Transition, the adoption of a production economy based on the domestication of plants and animals, is “one of the fundamental structural processes of human history” (Boquet-Appel, 2011a, 2011b), and dramatically changed several aspects of the human experience. Various studies suggest that the Neolithic Transition was accompanied by a worsening in health status and well-being, resulting in an increase of osteological markers of stress (e.g. cribra orbitalia and enamel hypoplasia; Armelagos et al., 1991, 1996, 2005). In addition, possibly due to unsanitary and deprived conditions and a more infectious environment (Armelagos et al., 1991, 1996, 2005). In addition, it has been suggested that certain Neolithic infant feeding practices may have had a negative impact on children survivorship (Pearson et al., 2010). Exploring patterns of growth in Neolithic children can integrate data coming from paleopathological and paleodemographic sources, and can contribute to the debate on biocultural Neolithic adaptive strategies.

The prehistoric skeletal series from Liguria (northwestern Italy) represents an important source of information on the past peopling of the northwestern Mediterranean from the Upper Paleolithic to the Metal Ages (Del Lucchese, 1997; Formicola et al., 2005; Maggi et al., 1997; Sparacello et al., 2018). Evidence of Neolithic occupation comes from several caves and rock shelters opening in the Finalese area, where renowned sites such as Arene Candide have yielded detailed stratigraphic successions (Aroba et al., 2017; Maggi et al., 1997; Tiné, 1999). About 200 burials and an undefined number of scattered human remains have been reported from these sites (e.g. Del Lucchese, 1997; Delfino, 1981; Issel, 1908; Panelli and Rossi, 2015, 2017; Parenti and Messeri, 1962; Richard, 1942; Sparacello et al., 2018, 2019a, 2019b). However, a large portion of the skeletal series had been excavated since the mid-19th century and was accompanied by little information about the depositional context (De Pascale, 2007, 2008; Rossi et al., 2014). Only recently, a large-scale campaign of direct dating on Ligurian human remains has been conducted (project BUR.P.P.H., PI ID), and allowed for the chronological characterization of the depositional context (De Pascale, 2007, 2008; Rossi et al., 2014). Only recently, a large-scale campaign of direct dating on Ligurian human remains has been conducted (project BUR.P.P.H., PI ID), and allowed for the chronological characterization of the depositional context (De Pascale, 2007, 2008; Rossi et al., 2014).

This study explores patterns of growth in Ligurian Neolithic children through the analysis of femoral length in individuals whose age at death was independently estimated from dental development. The comparison with a reference sample of modern, healthy, and well-nourished children (the Denver Growth Study; Maresh, 1943, 1955, 1970) will allow for an evaluation of well-being among these early agriculturalists, as done in previous studies (e.g. Harrington and Pfeiffer, 2008; Humphrey, 2006, 2002; Pfeiffer and Harrington, 2010). Subsistence of Neolithic Ligurian people was based on a variety of domesticated plants and animals, is accompanied by a worsening in health status and well-being, resulting in an increase of osteological markers of stress (e.g. cribra orbitalia and enamel hypoplasia; Armelagos et al., 1991, 1996, 2005). In addition, possibly due to unsanitary and deprived conditions and a more infectious environment (Armelagos et al., 1991, 1996, 2005). In addition, it has been suggested that certain Neolithic infant feeding practices may have had a negative impact on children survivorship (Pearson et al., 2010). Exploring patterns of growth in Neolithic children can integrate data coming from paleopathological and paleodemographic sources, and can contribute to the debate on biocultural Neolithic adaptive strategies.

The prehistoric skeletal series from Liguria (northwestern Italy) represents an important source of information on the past peopling of the northwestern Mediterranean from the Upper Paleolithic to the Metal Ages (Del Lucchese, 1997; Formicola et al., 2005; Maggi et al., 1997; Sparacello et al., 2018). Evidence of Neolithic occupation comes from several caves and rock shelters opening in the Finalese area, where renowned sites such as Arene Candide have yielded detailed stratigraphic successions (Aroba et al., 2017; Maggi et al., 1997; Tiné, 1999). About 200 burials and an undefined number of scattered human remains have been reported from these sites (e.g. Del Lucchese, 1997; Delfino, 1981; Issel, 1908; Panelli and Rossi, 2015, 2017; Parenti and Messeri, 1962; Richard, 1942; Sparacello et al., 2018, 2019a, 2019b). However, a large portion of the skeletal series had been excavated since the mid-19th century and was accompanied by little information about the depositional context (De Pascale, 2007, 2008; Rossi et al., 2014).

This study explores patterns of growth in Ligurian Neolithic children through the analysis of femoral length in individuals whose age at death was independently estimated from dental development. The comparison with a reference sample of modern, healthy, and well-nourished children (the Denver Growth Study; Marshell, 1943, 1955, 1970) will allow for an evaluation of well-being among these early agriculturalists, as done in previous studies (e.g. Harrington and Pfeiffer, 2008; Humphrey, 2006, 2002; Pfeiffer and Harrington, 2010). Subsistence of Neolithic Ligurian people was based on a variety of domesticated plants and animals, is accompanied by a worsening in health status and well-being, resulting in an increase of osteological markers of stress (e.g. cribra orbitalia and enamel hypoplasia; Armelagos et al., 1991, 1996, 2005). In addition, possibly due to unsanitary and deprived conditions and a more infectious environment (Armelagos et al., 1991, 1996, 2005). In addition, it has been suggested that certain Neolithic infant feeding practices may have had a negative impact on children survivorship (Pearson et al., 2010). Exploring patterns of growth in Neolithic children can integrate data coming from paleopathological and paleodemographic sources, and can contribute to the debate on biocultural Neolithic adaptive strategies.

The prehistoric skeletal series from Liguria (northwestern Italy) represents an important source of information on the past peopling of the northwestern Mediterranean from the Upper Paleolithic to the Metal Ages (Del Lucchese, 1997; Formicola et al., 2005; Maggi et al., 1997; Sparacello et al., 2018). Evidence of Neolithic occupation comes from several caves and rock shelters opening in the Finalese area, where renowned sites such as Arene Candide have yielded detailed stratigraphic successions (Aroba et al., 2017; Maggi et al., 1997; Tiné, 1999). About 200 burials and an undefined number of scattered human remains have been reported from these sites (e.g. Del Lucchese, 1997; Delfino, 1981; Issel, 1908; Panelli and Rossi, 2015, 2017; Parenti and Messeri, 1962; Richard, 1942; Sparacello et al., 2018, 2019a, 2019b). However, a large portion of the skeletal series had been excavated since the mid-19th century and was accompanied by little information about the depositional context (De Pascale, 2007, 2008; Rossi et al., 2014). Only recently, a large-scale campaign of direct dating on Ligurian human remains has been conducted (project BUR.P.P.H., PI ID), and allowed for the chronological characterization of most burials and individuals reconstructed from the scattered remains (Sparacello et al., 2018, 2019a, 2019b).

This study explores patterns of growth in Ligurian Neolithic children through the analysis of femoral length in individuals whose age at death was independently estimated from dental development. The comparison with a reference sample of modern, healthy, and well-nourished children (the Denver Growth Study; Marshell, 1943, 1955, 1970) will allow for an evaluation of well-being among these early agriculturalists, as done in previous studies (e.g. Harrington and Pfeiffer, 2008; Humphrey, 2006, 2002; Pfeiffer and Harrington, 2010). Subsistence of Neolithic Ligurian people was based on a variety of domesticated plants and animals, is accompanied by a worsening in health status and well-being, resulting in an increase of osteological markers of stress (e.g. cribra orbitalia and enamel hypoplasia; Armelagos et al., 1991, 1996, 2005). In addition, possibly due to unsanitary and deprived conditions and a more infectious environment (Armelagos et al., 1991, 1996, 2005). In addition, it has been suggested that certain Neolithic infant feeding practices may have had a negative impact on children survivorship (Pearson et al., 2010). Exploring patterns of growth in Neolithic children can integrate data coming from paleopathological and paleodemographic sources, and can contribute to the debate on biocultural Neolithic adaptive strategies.

The prehistoric skeletal series from Liguria (northwestern Italy) represents an important source of information on the past peopling of the northwestern Mediterranean from the Upper Paleolithic to the Metal Ages (Del Lucchese, 1997; Formicola et al., 2005; Maggi et al., 1997; Sparacello et al., 2018). Evidence of Neolithic occupation comes from several caves and rock shelters opening in the Finalese area, where renowned sites such as Arene Candide have yielded detailed stratigraphic successions (Aroba et al., 2017; Maggi et al., 1997; Tiné, 1999). About 200 burials and an undefined number of scattered human remains have been reported from these sites (e.g. Del Lucchese, 1997; Delfino, 1981; Issel, 1908; Panelli and Rossi, 2015, 2017; Parenti and Messeri, 1962; Richard, 1942; Sparacello et al., 2018, 2019a, 2019b). However, a large portion of the skeletal series had been excavated since the mid-19th century and was accompanied by little information about the depositional context (De Pascale, 2007, 2008; Rossi et al., 2014). Only recently, a large-scale campaign of direct dating on Ligurian human remains has been conducted (project BUR.P.P.H., PI ID), and allowed for the chronological characterization of most burials and individuals reconstructed from the scattered remains (Sparacello et al., 2018, 2019a, 2019b).
Environmental stress and poor health conditions are suggested by a high frequency of enamel hypoplasia (Formicola, 1987; Orellana González et al., 2019) and by several cases of osteoarticular tuberculosis (Canci et al., 1996; Formicola et al., 1987; Sparacello et al., 2017, 2018, and unpublished data, see below), a highly infectious, debilitating, and growth-imparing disease (Sparacello et al., 2016). We expect that environmental hardships experienced by Neolithic Ligurian people will result in a pattern of development showing growth faltering when compared to a modern industrialized sample.

2. Materials and methods

The sub-adults included in this study consist of 33 individuals spanning birth to late adolescence, chronologically belonging to the Neolithic of Liguria (c. 5800 – 3800 cal. BCE). We included only the individuals that were directly dated (Table 1; Sparacello et al., 2020), and the vast majority (29/33) chronologically overlap with the Square Mouthed Pottery Culture (SMP; c. 5000 – 4300 cal. BCE; Binder and Sénépart, 2010; Del Lucchese and Starnini, 2015). Three individuals from Arma dell’Aquila chronologically overlap with the earlier Impressive-Cardial Complex (ICC; Binder et al., 2017; Sparacello et al., 2019a,2019b), and one from Grotta Pollera with the later Chasséen (4300–3700 BCE; Crepaldi, 2001; Maggi, 1997). All remains were unearthed from six caves (Aren Candide Cave, Arma dell’Aquila, Grotta marina di Bergeggio, Grotta dei Pipistrelli, Grotta Pollera, Arma Strapantente) situated within a radius of 5 km in the Finalese area (Fig. 1). Data was collected at the Museo di Archeologia Liguria, Genova, at the Museo Archeologico del Finale, Finale Ligure, and at the Museo di Storia Naturale – Sezione di Antropologia e Etnologia, Università degli Studi di Firenze. All the available remains belonging to the Neolithic period of Liguria were surveyed, with the exception of the four sub-adults housed at the Museo delle Civiltà in Rome.

For all children below the age of 12, age at death estimates are based on dental mineralization following AlQahtani et al. (2010). Dental formation shows considerably less populational variation than eruption, and is less influenced by environmental factors (Demirjian, 1986; review in Saunders, 2008). However, the accuracy of age at death determination is influenced by the number of teeth that could be examined. Dental eruption following AlQahtani et al. (2010) was used when mineralization could not be assessed due to impossibility of examining the root (two adolescent individuals). All age estimates and information on tooth development is available in Supplementary Information S1. Due to the small sample size for each age class, we decided to report the results using the midpoint of the age estimate for each individual.

Femoral maximum length was measured following the standards in the field (e.g. Schaefer et al., 2009) using a digital caliper and an osteometric table, as appropriate. Length was measured without epiphyses in children, and with the epiphysis in adolescents above 12 years of age (Ruff, 2007). Unfortunately, in two adolescents (e.g. Pollera 1 PE and Pollera 34 PE) one or both epiphyses were adhered to the metaphysis with plaster, and a slight overestimation of the maximum length cannot be excluded (Table 1; Pollera 34 PE was not included in the analysis due to absence of the distal epiphysis, and its measurements are in Supplementary Information S2).

The growth pattern in our sample was compared with the standards derived from the Denver Growth Study, which consists of longitudinal bone length data from healthy children, derived from radiographs collected in the United States between 1935–1967 (Maresh, 1943, 1955, 1970), and commonly used in comparisons with prehistoric populations (review in Mays, 2018). The mean of male and female diaphyseal length was used, due to the absence of sex estimation for most of our immature remains.

Following previous research (e.g. Harrington and Pfeiffer, 2008; Humphrey, 2000, 2003; Ives and Humphrey, 2017; Pfeiffer and Harrington, 2010), we compared absolute length for age, and relative length as a percentage of the mean adult length (pooled sexes) for the same population (for the Neolithic Ligurian sample: n = 25; males = 13; females: 12; average femur M1 = 410.5 mm; for the Denver Growth Study: n = 68; femur M1 = 489 mm; Harrington and Pfeiffer, 2008).

It should be noted that the values of absolute length for age are biased by radiographic magnification proportionally to bone size (Feldesman, 1992; Humphrey, 2003). Ruff (2007) proposed two regression equations correcting the radiographic measurements made on the original x-rays of the Denver Growth Study and applied it to a smaller sample of 20 individuals (10 males and 10 females). The data points obtained for the Ligurian sample were therefore plotted against: 1) the mean and ± 1/2 SD absolute length between birth and 12 years of age of the Denver Growth Study (Maresh, 1955, 1970) corrected for radiographic magnification using the formulae proposed by Ruff (Ruff, 2007:702); and 2) the mean and ± 1/2 SD absolute length between 1 and 17 years of age of the subsample studied by Ruff, based on the data presented in his Table 1 (Ruff, 2007:702).

The proportion of adult age attained at a given age is only minimally influenced by radiographic magnification. Ligurian data were plotted against the mean and ± 1/2 SD proportion of adult size attained between birth and 17 years of age of 1) the Denver Growth Study (Maresh, 1955, 1970; see also Humphrey, 2000; Pfeiffer and Harrington, 2010), and 2) the subsample studied by Ruff, based on the data presented in his Table 1 (Ruff, 2007:702), and correcting the adult length of the Denver Growth Study using the regression for bones longer than 217 mm (adjusted = 0.949 × original length + 5.63).

In addition, we calculated a residual relative to the proportion of adult femur length achieved when comparing the Ligurian Neolithic people with the Denver Growth Study (cf. Harrington and Pfeiffer, 2008; Humphrey, 2000, 2003; Pfeiffer and Harrington, 2010). The proportion of adult femur length achieved was estimated graphically for the age points of the Ligurian Neolithic children (Supplementary Information S2), and the residuals were plotted on the mean and ± 1/2 SD proportion of adult size attained by the Denver sample between birth and 12 years of age, redrawn with the mean as a horizontal line (e.g. Humphrey, 2000, 2003).

3. Results

Fig. 2 shows the absolute maximum length of the femur in the Ligurian Neolithic sample when compared with the data of the Denver Growth Study, corrected for radiographic magnification following Ruff (2007), and the subsample from the Denver Growth Study selected and corrected by Ruff (2007). In both graphs, the Ligurian Neolithic growth pattern tend to fall consistently two standard deviations below the mean.

Fig. 3 shows the pattern of growth expressed as proportion of mean adult length attained in the Ligurian Neolithic sample when compared with the data of the Denver Growth Study, and the sample from the Denver Growth Study selected by Ruff (2007). The Ligurian Neolithic sample now falls close to the mean, or above, of the Denver Growth Study up to the age of 2.5, and consistently below between the ages of 4.5 and 9. Most older children and adolescents fall close to or above the mean of the Denver Growth Study, except for one who is more than two standard deviations below the mean. The slight differences observed between the entire Denver sample and the results by Ruff (2007) are mostly due to the greater standard deviations in the latter study, which is based on a smaller sample size (n = 20 compared to n = 70–80 in Maresh, 1970; Humphrey, 2000).

The pattern from Fig. 3, clearly delineated in Fig. 4, shows the residual relative to the proportion of adult femur length achieved, when comparing the Ligurian Neolithic sample (only measurements without epiphyses) with a) the Denver Growth Study, and b) the sample from the Denver Growth Study selected by Ruff (2007). Neolithic Ligurian individuals tend to fall consistently below the mean of the Denver
Growth Study between 4.5 and 8.5 years of age, and in three cases more than two standard deviations below the mean (Fig. 4a). Note that Ruff (2007) did not present data for individuals below 1 year of age. Also, the larger standard deviation using data from Ruff’s (2007) study is probably influenced by the smaller sample size (see above).

4. Discussion

Through the comparison of dental maturation and skeletal development in a bioarchaeological sample of children and juveniles, this study aimed to evaluate Neolithic growth disturbances in Liguria (Italy) and to discern their possible environmental correlates. This study has the advantage of being from a narrow geographical area, with all sites within a radius of a few kilometers, and most likely belonging to the same agropastoral system (Rowley-Conwy et al., 1992). In addition, most individuals are dated to a precise chronological phase of human occupation, with dates primarily spanning c. 4800-4400 BCE at 2σ, when the Square Mouthed Pottery culture was noted in the region (Maggi et al., 1997). The few individuals belonging to earlier or later chrono-cultural phases do not appear to deviate significantly from the general pattern observed. Although important caveats should be taken into account in any bioarchaeological study, especially when patterns of development are involved (review in Saunders, 2008), the Ligurian sample can be considered representative of a Neolithic population, with presumably a well-defined set of biocultural adaptations to specific environmental challenges.

When compared to the reference sample of the Denver Growth Study, the Ligurian Neolithic people tend to have shorter femora during growth, especially when considering absolute femoral length, and less markedly when length is expressed as a proportion of mean adult size. In addition, using the latter method, a majority of Ligurian individuals falls above the reference sample in early life (between birth and c. 2.5 years), indicating a longer femur for their age compared to Denver, followed by a clear downward deflection between 4.5–9 years. Considering that the Denver sample is composed by healthy and well-nourished modern children, which are assumed to have attained their
full growth potential, the pattern observed in the Ligurian Neolithic sample would indicate optimal development in early life, followed by growth faltering.

In previous studies, some prehistoric populations showed a similar pattern: Humphrey (2003) observed that the three Native North American samples included in her review (Knoll, Libben, and San Cristóbal samples; Johnston, 1962; Lovejoy et al., 1990; Ryan, 1976) exhibited relatively longer femoral length than Denver during infancy (until about 1.5 years), followed by a dramatic reversal in the growth trajectory, and discussed the possibility of a genetic component influencing rates of skeletal growth and/or dental maturation. However, the different timing of the growth rate reversal in the three groups suggested that additional environmental factors, such as infant early feeding practices and the weaning process, might have contributed to varying growth trajectories (Humphrey, 2000, 2003).

Maternal milk supplies passive immunity and weaning increases the pathogen load, requiring a sudden energetic investment into immune defense by the child (McDade, 2003; McDade and Worthmann, 1998). Therefore, various studies have associated the onset of deficits in growth with the cessation of breast feeding (e.g. Mays, 2010; Humphrey, 2000). For example, in the 18th and 19th century London, a widespread practice of early breast feeding cessation was introduced due to social and cultural factors (Fildes, 1986, 1995; Nitsch et al., 2011) and resulted in growth deficits (beginning around 8 months of age, and becoming marked by 15 months; Humphrey, 2000; Ives and Humphrey, 2017), high prevalence of enamel defects in teeth (King et al., 2005), and high infant mortality (Humphrey et al., 2012). An even earlier onset of growth faltering was attributed to deprived nutritional status of the mother, or poor quality of early supplementary foods (Humphrey, 2003). Mays (2010), noted how the cessation of breast feeding in a medieval sample between 1–2 years of age (estimated via isotopic analysis) “marks the start of a general pattern of deficient growth” (Mays, 2010:69; see also Mays, 2007). Although the link between breast feeding cessation and growth faltering is speculative given the small sample size, the pattern observed in the Ligurian Neolithic sample with growth retardation apparent only after c. 2.5 years of age seems to be compatible with the direct estimation of breast feeding duration in two SMP Neolithic individuals (including the adolescent individual Arene Candide V BB studied here; Goude et al., 2019). The isotopic profiles ($\delta^{15}N$ and $\delta^{13}C$) suggest that breast feeding extended into the third year of life, as observed in other Neolithic groups (Cienkosz-Stepanczak et al., 2017; Fernández-Crespo et al., 2018; Howcroft, 2013; Howcroft et al., 2014; Pearson et al., 2010, 2015; Scharlotta et al., 2018). The presence of a period of metabolic stress around 2.5–3.5 years of age is also supported by a significant increase in linear enamel hypoplasia frequency in the same Ligurian
SMP Neolithic sample (Orellana González et al., 2019). These multiple signals of developmental disturbances—corresponding to the estimated end of passive immunity—may be due to poor nutrition and/or increased pathogen load. Although it is difficult to quantitatively assess the caloric intake of SMP Neolithic people, their diet included a significant component of animal protein (Le Bras-Goude et al., 2006; Goude et al., 2014), which was also likely used as a weaning food (Goude et al., 2019). In this context, the effect of disease may have been relatively more important, as we discuss further below.

It could be argued that higher relative femoral length in early infancy may be influenced by a combination of two factors: relatively low variation in neonatal size (e.g. Leary et al., 2006), and markedly small adult size in the prehistoric group compared with the Denver sample (mean maximum length of the femur in the pooled sex Ligurian sample is c. 59 mm smaller, after adjusting the mean of the Denver sample for variation in neonatal size (e.g. Leary et al., 2006), and markedly small adult size in the prehistoric group compared with the Denver sample (mean maximum length of the femur in the pooled sex Ligurian sample is c. 59 mm smaller, after adjusting the mean of the Denver sample for radiographic magnification, see above). If differences in adult size were not entirely due to genetic differences, but also to stunting due to later metabolic stress, the pattern observed here in children below 2.5 years may not be a reflection of rapid growth, and in general absolute femoral length patterns may be more informative. Although it is difficult to determine the degree to which Ligurian adults attained their full growth potential, body proportions in the European Neolithic were markedly different than in modern times (e.g. Ruff et al., 2006), and Ligurian Neolithic adults do not appear to be significantly smaller than other contemporary Mediterranean Neolithic populations (e.g. Rosenstock et al., 2019). The use of percent of adult size attained is generally advised in these contexts (Hoppa and Fitzgerald, 1999; Humphrey, 2003), but further research is necessary to independently assess the nutritional and developmental status of Ligurian Neolithic infants.

Regardless of the method used to compare Ligurian children with the Denver sample, it is clear that by the age of 4.5 years, Ligurian Neolithic children are experiencing growth faltering. All individuals fall below the mean of the Denver sample, the majority being between -1 and -2 standard deviations (percent of adult size attained) or well below -2 standard deviations (absolute femoral length). Previous bioarchaeological studies comparing growing individuals from prehistoric groups with the Denver sample almost invariably show a growth deficit in the former (reviews in Humphrey, 2000, 2003; Larsen, 2015; Lewis, 2007; Mays, 2018; Saunders, 2008). However, the variation in the prehistoric patterns can be quite marked, and is assumed to reflect different social and environmental condition, in addition to genetic differences, as happens in contemporary groups (Bogin, 1988; Eveleth and Tanner, 1990). The more apparent growth deficit in agriculturalists when compared to hunter-gatherers has been attributed to their lesser reliance on animal protein (Cook, 1979, 1984; Goodman, 1998; Larsen et al., 2002). Within agriculturalists, the overreliance on staple foods with poor nutritional properties (e.g. maize), seem to coincide with poor growth (Cook, 1984; Goodman et al., 1984). In medieval Croatia, agriculturalist groups from the inland show reduced long bone length at the same age than pastoralist communities from the coast (Pinhasi et al., 2014). Archaeological evidence suggests that the subsistence of Ligurian Neolithic people had a strong pastoral component (Macphail et al., 1997; Rowley-Conwy et al., 1992, 1997, 1998), which led to the consumption of animal protein since early life, as suggested by isotopic studies (Le Bras-Goude et al., 2006; Goude et al., 2014, 2019). The nutritional status of Ligurian Neolithic people may therefore have been relatively good for a prehistoric group, yet the pattern of growth faltering appears to be among the most relevant when compared with other bioarchaeological populations (cf. Humphrey, 2003). Few studies on growth patterns have been conducted on Neolithic skeletal series from western Eurasia, probably due to lack of reasonably numerous samples of children. Pinhasi et al. (2011) found similar growth patterns between the lower limbs of the Denver sample and a small sample of Greek Neolithic children. The larger skeletal series from Çatalhöyük (Turkey), which is comparable to the Ligurian one in terms of chronology, diet, and subsistence (e.g. Pearson et al., 2015; Richards et al., 2003), shows growth trajectories during childhood that are in line with the Denver sample (Ruff et al., 2013), and in general appears to have had a good health status (Hillson et al., 2013; Larsen et al., 2019).

In fact, in addition to dietary deprivation, health status and infectious load are considered a major influence on growth patterns in modern and prehistoric populations (Bogin, 1988; Larsen, 2015; Mays, 2018; Stephenson, 1999; Stinson, 2000). In previous bioarchaeological studies, disease burden was inferred based on increased sedentism or contact with European-introduced infectious disease (e.g. Jantz and Owsley, 1984; Lovejoy et al., 1990). In the Neolithic Ligurian sample, several individuals show osteoarticular lesions compatible with tuberculosis, including two children and one adolescent included in this study. Pollera 21, c. 5 years of age, shows multiple cistic lesions and lytic bone lesions in the vertebral column, shoulder joint, and pelvis (Sparacello et al., 2017). At the age of 8.5 years, the most stunted individual (Arene Candide 6730.3 + 6623.1 + 6625.2) displays lesions consistent with tuberculosis in the thoracic and sacral vertebral bodies (Fig. 5). Arene Candide V (excavations Bernabò Brea – Cardini, c. 15 years old, suffered from Pott’s spine, a collapse of the vertebral column considered pathognomonic for TB (Formicola et al., 1987). These individuals add to the growing evidence for this disease in both adults and children in Neolithic Liguria (e.g. Canci et al., 1996; Sparacello et al., 2018) and mark a sharp contrast to the Çatalhöyük site, where no evidence of skeletal tuberculosis has been found despite the analysis a
large skeletal series spanning over a millennium (Larsen et al., 2019).

Indeed, evidence of tuberculosis is rare in the bioarchaeological record (Roberts and Buikstra, 2003); finding three individuals with lesions consistent with osteoarticular tuberculosis in our small sample of developing individuals suggests a high prevalence in the Ligurian Neolithic population. This hypothesis is supported by the fact that skeletal lesions manifest only in a small percentage of infected individuals (estimates ranging from 1 % to 3–5 %; Turgut, 2001; Vigorita, 2008). In addition, the 5–10 years age class is the one with the lower risk of contracting the disease in modern epidemiological studies (Seddon and Shingadia, 2014). Active tuberculosis is a debilitating disease that impairs skeletal development (Mansukoski and Sparacello, 2018; Sparacello et al., 2016), but also the more common latent and sub-clinical states require a constant investment in immune defenses (Ulrichs et al., 2005; Lin and Flynn, 2010), possibly diverting energy from growth (Ganmaa et al., 2012; see also McDade et al., 2008). We propose that significant infectious burden due to a high prevalence of tuberculosis in the Neolithic of Liguria may explain, in part, the pattern of growth faltering observed in this study. However, further research is necessary to investigate the paleoepidemiology of tuberculosis among Ligurian Neolithic people by cross-referencing demographic data with new differential diagnoses.

Although the sample size is small, older children and early adolescents appear to have attained a proportion of the adult femoral length similar or higher than the reference Denver sample, with the exception of the adolescent with tuberculosis. This may indicate growth retardation followed by catch-up growth, resulting from an adaptation or acclimatization to environmental hardships (e.g. Beaton, 1989; Lewis, 2007:67; Stini, 1975). Indeed, during adolescence genetic influence on growth is expressed more strongly than during childhood, and environmental factors are relatively less important (Bogin, 1999). However, when considering absolute femoral length, Ligurian Neolithic adolescents are still well below the Denver sample. As discussed above, the relevance of the two methods to infer optimal growth ultimately depends on whether differences in final stature between the Ligurian and Denver sample are due to genetic factors or failure to attain the full growth potential.

As in all bioarchaeological studies, there are numerous caveats that should be taken into account when interpreting the above results, which are not limited to the small sample size. Growth data from prehistoric populations are cross-sectional instead of longitudinal and represent a cross-section of non-survivors. Cross-sectional data may not accurately describe the developmental patterns of a population since growth events are not synchronized between individuals, resulting in a smoothing in the slope of growth curves (Humphrey, 2003). Furthermore, growth of non-survivors may be unrepresentative of the normal development of the living population (noted in the “osteological paradox”; Wood et al., 1992; Wright and Yoder, 2003), especially if non-survivors died of long-term, debilitating diseases (Goodman, 1993; Saunders and Hoppa, 1993; Sundick, 1978). Saunders and Hoppa (1993) noted that the linear growth of survivors is usually greater than that of non-survivors, but they concluded that the effect of this bias is relatively minor. However, given the widespread evidence of tuberculosis, the possibility that non-survivors suffered from long-term developmental disturbances may be particularly relevant in the Ligurian sample. The individuals with tuberculosis lesions appear stunted, but so too are most individuals between c 4.5 and 8.5 years of age. Ideally, it would be necessary to verify whether children dying of different causes at the same age had similar dimensions, which is problematic given the small sample size of bioarchaeological samples and the uncertainties in assessing cause of death. Luckily, in our small sample two individuals, Arene Candide VIII (excavations Bernabò Brea – Cardini), age midpoint 4.5 years, and Arene Candide 3 (excavations Tiné), age midpoint 8.5 years, show clear signs of perimortem trauma (Fig. 6). Paradoxically, their violent and presumably sudden death makes them more likely to be representative of the population of survivors, although we cannot exclude that they suffered of a long-term disease, which did not leave obvious traces in the skeleton. Nevertheless, their proportion
of adult femoral length attained falls, like for most individuals between 4.5 and 8.5, between 1 and 2 standard deviation below the mean of the Denver sample. Although the small sample makes any inference tentative at best, this would suggest that growth disturbances during childhood were widespread in the Neolithic of Liguria.

5. Conclusions

This study is part of a renewed, multidisciplinary attempt to characterize population health and well-being, subsistence patterns, and biocultural adaptive strategies in a chronologically and spatially well-defined window of European Neolithic variability (e.g. Orellana González et al., 2019; Goude et al., 2019; Sparacello et al., 2017, 2018, 2019a, 2019b), adding to the current debate on the competitive advantages and disadvantages of a Neolithic lifestyle.

When considering absolute femoral length, the Ligurian skeletal series is significantly smaller than the modern Denver sample throughout development. However, when considering the proportion of adult size attained at a given age, results suggest optimal development among Ligurian Neolithic people in early infancy until the age of c. 2.5–3 years. Between 4.5 and 8.5 years, growth faltering is apparent, while later children and adolescents may show catch-up growth.

Although the sample size is small, the onset of growth faltering corresponds with the estimated timing of weaning in the same Neolithic sample, reconstructed via isotopic analysis (Goude et al., 2019), and with developmental disturbances observed in enamel mineralization (Orellana González et al., 2019). We propose that the growth pattern observed may relate more to disease load than nutritional factors. Early in life, optimal growth may be due to infant feeding practices attempting to favor both growth, via the early introduction of animal protein (Goude et al., 2019), and immune protection, by delaying the termination of breast feeding into the third year of life. Evidence of growth faltering between 4.5–8.5 years of age may reflect, among other environmental hardships, the stunting effect of debilitating diseases such as tuberculosis (which is manifest in three individuals), as well as the significant metabolic investment required into the immune system at the expense of growth in areas with significant infectious load.

In addition to small sample size, several methodological and theoretical caveats suggest caution when interpreting these results, and further research is necessary to test the above hypotheses. New differential diagnoses on individuals with suspect tuberculous osteoarticular lesions, coupled with demographic data, will contribute to the assessment of the paleopopidemiology of this disease among Ligurian Neolithic people. Demographic studies on the complete skeletal series of dated Neolithic Ligurian children will evaluate child mortality in order to verify whether the results observed here may be influenced by differential survivorship and frailty (Goodman, 1993; Saunders and Hoppa, 1993; Wood et al., 1992). The integration of developmental and demographic data will also inform the current debate on the Neolithic Demographic transition and its possible determinants (Bocquet-Appel, 2002, 2009, 2011a, 2011b; Page et al., 2016).

The possibility of adaptation/acclimatization to slow growth among Ligurian Neolithic people, followed by catch up growth during adolescence, should be explored with a larger sample of subadults, which can be attained only by expanding the regional focus of the research, or by conducting further excavations in the Finalese area. Additionally, the use of other long bones from this same skeletal series may provide further confirmation of the results found here (e.g. Goude et al., 1993).

Other limitations of this study are the use of the midpoint of the age estimate based on available information about tooth development (Supplementary Information S1). A refined age estimation will be possible with the advancement of non-invasive analyses of tooth microstructure (e.g. Smith et al., 2015). Furthermore, error may be introduced by the lack of sex determination, given the well-known differences in developmental trajectories between sexes (e.g. Schafer et al., 2009), which may be explored in the future using the amelogenin analysis of the enamel (Stewart et al., 2017).

Acknowledgements

The authors thank the Soprintendenza Archeologia, Belle Arti e Paesaggio per la città metropolitana di Genova e le province di Imperia, La Spezia e Savona, for granting access to the skeletal collections, especially the Superintendent Vincenzo Tiné and the Officers Elisabetta Starnini, Marta Conventi, Nico Radi, and Stefano Costa. Thanks to the Director of the Museo di Archeologia Liguria, Patrizia Garibaldi, for granting access to the collections owned by the Comune di Genova. We are grateful to the directors and curators of the museums where the skeletal collections are preserved, for continuous assistance during the data collection: Monica Zavattaro (Museo di Storia Naturale – Sezione di Antropologia e Etnologia, Università degli Studi di Firenze), Patrizia Garibaldi, Guido Rossi, Irene Molinari (Museo di Archeologia Ligure, Genova), Daniele Arobo, and Andrea De Pascale (Museo Archeologico del Finale, Finale Ligure). Thanks to Chiara Panelli, Stefano Rossi, Roberto Maggi, Vincenzo Formicola, Paolo Biagi, Giovanni Murialdo, Elisa Bianchi, Simona Mordeglia, Walter Siciliano, Gwenaelle Goude, Kate McGrath, Sacha Kacki, Eric Pubert, Alain Queffelec, Giovanna Stefania, Luca Bachechi, Chiara Bullo, and Brunetto Chiarelli for assistance during data collection and for their scientific input. A special thank goes to Mario.

We are grateful to the editor and the two reviewers who significantly improved this manuscript with their comments and suggestions.

The project DEN.P.H.: Dental anthropology at the Pleistocene-Holocene transition – insights on lifestyle and funerary behaviour from Neolithic Liguria (Italy) (ID) is funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 752626. The project BUR.P.P.H: Burial practices at the Pleistocene - Holocene transition: the changing role of pathology, violence, and “exceptional events” (VSS) has received financial support from the French State in the framework of the “Investments for the future” Program, IdEx Bordeaux, reference ANR-10-IDEX-03-02.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jasrep.2019.12.002.

References

I. Dori, et al.

International Journal of Paleopathology xxx (xxxx) xxx–xxx

the paleoepidemiology of ancient tuberculosis from the structural analysis of post-crani
al remains from the Ligurian Neolithic (northwestern Italy). Int J Paleopath 15, 50–64.
Sparacello, V.S., Roberts, C.A., Kerudin, A., Müller, R., 2017. A 6,500-year-old Middle
Neolithic child from Pollera Cave (Liguria, Italy) with probable multifocal os
ijpp.2017.01.004.
Sparacello, V.S., Panelli, C., Rossi, S., Dori, L., Varalli, A., Goude, G., Kacki, S., Partiot, C.,
Roberts, C.A., Moggi-Cecchi, J., 2018. Chapter 9: archaeoanthropology and palaeo-
biology of the burials and “scattered human remains” from Arma dell’Aquila (Finale
Ligure, Savona). In: In: Biagi, P., Starnini, E. (Eds.), Gli scavi all’Arma dell’Aquila
(Finale Ligure, Savona): le Ricerche e i Materiali degli Scavi del Novecento. Vol. 15.
Società per la Preistoria e Protoprotostoria della Regione Friuli-Venezia Giulia,
Quaderno, Trieste, Italy, pp. 143–181.
Sparacello, V.S., Panelli, C., Rossi, S., Dori, L., Varalli, A., Goude, G., Starnini, E., Biagi, P.,
2019b. The re-discovery of Arma dell’Aquila (Finale Ligure, Italy): new insights on
Neolithic funerary behavior from the sixth millennium BCE in the north-western
003.
Sparacello, V.S., Pearson, O.M., Coppa, A., Marchi, D., 2011. Changes in skeletal robus-
ticity in an Iron Age agropastoral group: the Samnites from the Alfedena necropolis
1002/ajs.21377.
Sparacello, V.S., Panelli, C., Rossi, S., Paneli, C., Goude, G., Palstra, S.W.L., Conventi, M.,
Del Luccchese, A., Arobbia, D., De Pascale, A., Zavattaro, M., Garibaldi, P., Rossi, G.,
the funerary use of caves in Liguria (northwestern Italy) from the Neolithic to historic
times: results from a large-scale AMS dating campaign on human skeletal series.
Francis, London.
determination of human remains from peptides in tooth enamel. PNAS 114, 13649–13654.
https://doi.org/10.1073/pnas.1714926115.
Watts, E.S., Johnston, F.E., Lasker, G.W. (Eds.), Biosocial Interrelations in Population
B., Huss-Ashmore, R., O’Rourke, D. (Eds.), Human Biology: An Evolutionary and
Temple, D.H., 2010. Patterns of systematic stress during the agricultural transition in
ajs.21208.
Tinè, V., 1999. Transizione tra Neolitico antico e Neolitico medio. Le ceramiche dello stile
(scavi 1977-1977). Bordighera, Italy: Istituto Internazionale di studi Liguri,
Ulrichs, T., Kosmiadi, G.A., Jörg, S., Pradl, L., Titukhina, M., Mishenko, V., Gushina, N.,
Kaufmann, S.H.E., 2005. Differential organization of the local immune response in
patients with active cavitary tuberculosis or with nonprogressive tuberculosis. J.
problems of inferring prehistoric health from skeletal samples. Curr. Anthrop. 3,
Wright, L.E., Yoder, C.J., 2003. Recent progress in bioarchaeology: approaches to the
osteological paradox. J. Archaeol. Res. 11, 43–70. https://doi.org/10.1023/
A:102120092506A.